payoffer

PayOffers.in

Wednesday, April 16, 2014

Java - Methods

A Java method is a collection of statements that are grouped together to perform an operation. When you call the System.out.println method, for example, the system actually executes several statements in order to display a message on the console.
Now you will learn how to create your own methods with or without return values, invoke a method with or without parameters, overload methods using the same names, and apply method abstraction in the program design.

Creating Method:

Considering the following example to explain the syntax of a method:
public static int funcName(int a, int b) {
  // body
}
Here,
  • public static : modifier.
  • int: return type
  • funcName: function name
  • a, b: formal parameters
  • int a, int b: list of parameters
Methods are also known as Procedures or Functions:
  • Procedures: They don't return any value.
  • Functions: They return value.
Method definition consists of a method header and a method body. The same is shown below:
modifier returnType nameOfMethod (Parameter List) {
 // method body
}
The syntax shown above includes:
  • modifier: It defines the access type of the method and it is optional to use.
  • returnType: Method may return a value.
  • nameOfMethod: This is the method name. The method signature consists of the method name and the parameter list.
  • Parameter List: The list of parameters, it is the type, order, and number of parameters of a method. These are optional, method may contain zero parameters.
  • method body: The method body defines what the method does with statements.

Example:

Here is the source code of the above defined method called max(). This method takes two parameters num1 and num2 and returns the maximum between the two:
/** the snippet returns the minimum between two numbers */
public static int minFunction(int n1, int n2) {
   int min;
   if (n1 > n2)
      min = n2;
   else
      min = n1;

   return min; 
}

Method Calling:

For using a method, it should be called. There are two ways in which a method is called i.e. method returns a value or returning nothing (no return value).
The process of method calling is simple. When a program invokes a method, the program control gets transferred to the called method. This called method then returns control to the caller in two conditions, when:
  • return statement is executed.
  • reaches the method ending closing brace.
The methods returning void is considered as call to a statement. Lets consider an example:
System.out.println("This is tutorialspoint.com!");
The method returning value can be understood by the following example:
int result = sum(6, 9);

Example:

Following is the example to demonstrate how to define a method and how to call it:
public class ExampleMinNumber{
   
   public static void main(String[] args) {
      int a = 11;
      int b = 6;
      int c = minFunction(a, b);
      System.out.println("Minimum Value = " + c);
   }

   /** returns the minimum of two numbers */
   public static int minFunction(int n1, int n2) {
      int min;
      if (n1 > n2)
         min = n2;
      else
         min = n1;

      return min; 
   }
}
This would produce the following result:
Minimum value = 6

The void Keyword:

The void keyword allows us to create methods which do not return a value. Here, in the following example we're considering a void method methodRankPoints. This method is a void method which does not return any value. Call to a void method must be a statement i.e. methodRankPoints(255.7);. It is a Java statement which ends with a semicolon as shown below.

Example:

public class ExampleVoid {

   public static void main(String[] args) {
      methodRankPoints(255.7);
   }

   public static void methodRankPoints(double points) {
      if (points >= 202.5) {
         System.out.println("Rank:A1");
      }
      else if (points >= 122.4) {
         System.out.println("Rank:A2");
      }
      else {
         System.out.println("Rank:A3");
      }
   }
}
This would produce the following result:
Rank:A1

Passing Parameters by Value:

While working under calling process, arguments is to be passed. These should be in the same order as their respective parameters in the method specification. Parameters can be passed by value or by reference.
Passing Parameters by Value means calling a method with a parameter. Through this the argument value is passed to the parameter.

Example:

The following program shows an example of passing parameter by value. The values of the arguments remains the same even after the method invocation.
public class swappingExample {

   public static void main(String[] args) {
      int a = 30;
      int b = 45;

      System.out.println("Before swapping, a = " +
                          a + " and b = " + b);

      // Invoke the swap method
      swapFunction(a, b);
      System.out.println("\n**Now, Before and After swapping values will be same here**:");
      System.out.println("After swapping, a = " +
                         a + " and b is " + b);
   }

   public static void swapFunction(int a, int b) {
   
      System.out.println("Before swapping(Inside), a = " + a
                           + " b = " + b);
      // Swap n1 with n2
      int c = a;
      a = b;
      b = c;

      System.out.println("After swapping(Inside), a = " + a
                           + " b = " + b);
   }
}
This would produce the following result:
Before swapping, a = 30 and b = 45
Before swapping(Inside), a = 30 b = 45
After swapping(Inside), a = 45 b = 30

**Now, Before and After swapping values will be same here**:
After swapping, a = 30 and b is 45

Method Overloading:

When a class has two or more methods by same name but different parameters, it is known as method overloading. It is different from overriding. In overriding a method has same method name, type, number of parameters etc.
Lets consider the example shown before for finding minimum numbers of integer type. If, lets say we want to find minimum number of double type. Then the concept of Overloading will be introduced to create two or more methods with the same name but different parameters.
The below example explains the same:
public class ExampleOverloading{

   public static void main(String[] args) {
      int a = 11;
      int b = 6;
      double c = 7.3;
      double d = 9.4;
      int result1 = minFunction(a, b);
      // same function name with different parameters
      double result2 = minFunction(c, d);
      System.out.println("Minimum Value = " + result1);
      System.out.println("Minimum Value = " + result2);
   }

  // for integer
   public static int minFunction(int n1, int n2) {
      int min;
      if (n1 > n2)
         min = n2;
      else
         min = n1;

      return min; 
   }
   // for double
   public static double minFunction(double n1, double n2) {
     double min;
      if (n1 > n2)
         min = n2;
      else
         min = n1;

      return min; 
   }
}
This would produce the following result:
Minimum Value = 6
Minimum Value = 7.3
Overloading methods makes program readable. Here, two methods are given same name but with different parameters. The minimum number from integer and double types is the result.

Using Command-Line Arguments:

Sometimes you will want to pass information into a program when you run it. This is accomplished by passing command-line arguments to main( ).
A command-line argument is the information that directly follows the program's name on the command line when it is executed. To access the command-line arguments inside a Java program is quite easy.they are stored as strings in the String array passed to main( ).

Example:

The following program displays all of the command-line arguments that it is called with:
public class CommandLine {

   public static void main(String args[]){ 
      for(int i=0; i<args.length; i++){
         System.out.println("args[" + i + "]: " +
                                           args[i]);
      }
   }
}
Try executing this program as shown here:
java CommandLine this is a command line 200 -100
This would produce the following result:
args[0]: this
args[1]: is
args[2]: a
args[3]: command
args[4]: line
args[5]: 200
args[6]: -100

The Constructors:

A constructor initializes an object when it is created. It has the same name as its class and is syntactically similar to a method. However, constructors have no explicit return type.
Typically, you will use a constructor to give initial values to the instance variables defined by the class, or to perform any other startup procedures required to create a fully formed object.
All classes have constructors, whether you define one or not, because Java automatically provides a default constructor that initializes all member variables to zero. However, once you define your own constructor, the default constructor is no longer used.

Example:

Here is a simple example that uses a constructor:
// A simple constructor.
class MyClass {
   int x;
   
   // Following is the constructor
   MyClass() {
      x = 10;
   }
}
You would call constructor to initialize objects as follows:
public class ConsDemo {

   public static void main(String args[]) {
      MyClass t1 = new MyClass();
      MyClass t2 = new MyClass();
      System.out.println(t1.x + " " + t2.x);
   }
}
Most often, you will need a constructor that accepts one or more parameters. Parameters are added to a constructor in the same way that they are added to a method, just declare them inside the parentheses after the constructor's name.

Example:

Here is a simple example that uses a constructor:
// A simple constructor.
class MyClass {
   int x;
   
   // Following is the constructor
   MyClass(int i ) {
      x = i;
   }
}
You would call constructor to initialize objects as follows:
public class ConsDemo {

   public static void main(String args[]) {
      MyClass t1 = new MyClass( 10 );
      MyClass t2 = new MyClass( 20 );
      System.out.println(t1.x + " " + t2.x);
   }
}
This would produce the following result:
10 20

Variable Arguments(var-args):

JDK 1.5 enables you to pass a variable number of arguments of the same type to a method. The parameter in the method is declared as follows:
typeName... parameterName
In the method declaration, you specify the type followed by an ellipsis (...) Only one variable-length parameter may be specified in a method, and this parameter must be the last parameter. Any regular parameters must precede it.

Example:

public class VarargsDemo {

   public static void main(String args[]) {
      // Call method with variable args  
   printMax(34, 3, 3, 2, 56.5);
      printMax(new double[]{1, 2, 3});
   }

   public static void printMax( double... numbers) {
   if (numbers.length == 0) {
      System.out.println("No argument passed");
      return;
   }

   double result = numbers[0];

   for (int i = 1; i <  numbers.length; i++)
      if (numbers[i] >  result)
      result = numbers[i];
      System.out.println("The max value is " + result);
   }
}
This would produce the following result:
The max value is 56.5
The max value is 3.0

The finalize( ) Method:

It is possible to define a method that will be called just before an object's final destruction by the garbage collector. This method is called finalize( ), and it can be used to ensure that an object terminates cleanly.
For example, you might use finalize( ) to make sure that an open file owned by that object is closed.
To add a finalizer to a class, you simply define the finalize( ) method. The Java runtime calls that method whenever it is about to recycle an object of that class.
Inside the finalize( ) method, you will specify those actions that must be performed before an object is destroyed.
The finalize( ) method has this general form:
protected void finalize( )
{
   // finalization code here
}
Here, the keyword protected is a specifier that prevents access to finalize( ) by code defined outside its class.
This means that you cannot know when or even if finalize( ) will be executed. For example, if your program ends before garbage collection occurs, finalize( ) will not execute.

Java - Regular Expressions

Java provides the java.util.regex package for pattern matching with regular expressions. Java regular expressions are very similar to the Perl programming language and very easy to learn.
A regular expression is a special sequence of characters that helps you match or find other strings or sets of strings, using a specialized syntax held in a pattern. They can be used to search, edit, or manipulate text and data.
The java.util.regex package primarily consists of the following three classes:
  • Pattern Class: A Pattern object is a compiled representation of a regular expression. The Pattern class provides no public constructors. To create a pattern, you must first invoke one of its public static compile methods, which will then return a Pattern object. These methods accept a regular expression as the first argument.
  • Matcher Class: A Matcher object is the engine that interprets the pattern and performs match operations against an input string. Like the Pattern class, Matcher defines no public constructors. You obtain a Matcher object by invoking the matcher method on a Pattern object.
  • PatternSyntaxException: A PatternSyntaxException object is an unchecked exception that indicates a syntax error in a regular expression pattern.

Capturing Groups:

Capturing groups are a way to treat multiple characters as a single unit. They are created by placing the characters to be grouped inside a set of parentheses. For example, the regular expression (dog) creates a single group containing the letters "d", "o", and "g".
Capturing groups are numbered by counting their opening parentheses from left to right. In the expression ((A)(B(C))), for example, there are four such groups:
  • ((A)(B(C)))
  • (A)
  • (B(C))
  • (C)
To find out how many groups are present in the expression, call the groupCount method on a matcher object. The groupCount method returns an int showing the number of capturing groups present in the matcher's pattern.
There is also a special group, group 0, which always represents the entire expression. This group is not included in the total reported by groupCount.

Example:

Following example illustrates how to find a digit string from the given alphanumeric string:
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
    public static void main( String args[] ){

      // String to be scanned to find the pattern.
      String line = "This order was placed for QT3000! OK?";
      String pattern = "(.*)(\\d+)(.*)";

      // Create a Pattern object
      Pattern r = Pattern.compile(pattern);

      // Now create matcher object.
      Matcher m = r.matcher(line);
      if (m.find( )) {
         System.out.println("Found value: " + m.group(0) );
         System.out.println("Found value: " + m.group(1) );
         System.out.println("Found value: " + m.group(2) );
      } else {
         System.out.println("NO MATCH");
      }
   }
}
This would produce the following result:
Found value: This order was placed for QT3000! OK?
Found value: This order was placed for QT300
Found value: 0

Regular Expression Syntax:

Here is the table listing down all the regular expression metacharacter syntax available in Java:
SubexpressionMatches
^Matches beginning of line.
$Matches end of line.
.Matches any single character except newline. Using m option allows it to match newline as well.
[...]Matches any single character in brackets.
[^...]Matches any single character not in brackets
\ABeginning of entire string
\zEnd of entire string
\ZEnd of entire string except allowable final line terminator.
re*Matches 0 or more occurrences of preceding expression.
re+Matches 1 or more of the previous thing
re?Matches 0 or 1 occurrence of preceding expression.
re{ n}Matches exactly n number of occurrences of preceding expression.
re{ n,}Matches n or more occurrences of preceding expression.
re{ n, m}Matches at least n and at most m occurrences of preceding expression.
a| bMatches either a or b.
(re)Groups regular expressions and remembers matched text.
(?: re)Groups regular expressions without remembering matched text.
(?> re)Matches independent pattern without backtracking.
\wMatches word characters.
\WMatches nonword characters.
\sMatches whitespace. Equivalent to [\t\n\r\f].
\SMatches nonwhitespace.
\dMatches digits. Equivalent to [0-9].
\DMatches nondigits.
\AMatches beginning of string.
\ZMatches end of string. If a newline exists, it matches just before newline.
\zMatches end of string.
\GMatches point where last match finished.
\nBack-reference to capture group number "n"
\bMatches word boundaries when outside brackets. Matches backspace (0x08) when inside brackets.
\BMatches nonword boundaries.
\n, \t, etc.Matches newlines, carriage returns, tabs, etc.
\QEscape (quote) all characters up to \E
\EEnds quoting begun with \Q

Methods of the Matcher Class:

Here is a list of useful instance methods:

Index Methods:

Index methods provide useful index values that show precisely where the match was found in the input string:
SNMethods with Description
1public int start()
Returns the start index of the previous match.
2public int start(int group)
Returns the start index of the subsequence captured by the given group during the previous match operation.
3public int end()
Returns the offset after the last character matched.
4public int end(int group)
Returns the offset after the last character of the subsequence captured by the given group during the previous match operation.

Study Methods:

Study methods review the input string and return a Boolean indicating whether or not the pattern is found:
SNMethods with Description
1public boolean lookingAt()
Attempts to match the input sequence, starting at the beginning of the region, against the pattern.
2public boolean find()
Attempts to find the next subsequence of the input sequence that matches the pattern.
3public boolean find(int start
Resets this matcher and then attempts to find the next subsequence of the input sequence that matches the pattern, starting at the specified index.
4public boolean matches()
Attempts to match the entire region against the pattern.

Replacement Methods:

Replacement methods are useful methods for replacing text in an input string:
SNMethods with Description
1public Matcher appendReplacement(StringBuffer sb, String replacement)
Implements a non-terminal append-and-replace step.
2public StringBuffer appendTail(StringBuffer sb)
Implements a terminal append-and-replace step.
3public String replaceAll(String replacement)
Replaces every subsequence of the input sequence that matches the pattern with the given replacement string.
4public String replaceFirst(String replacement)
Replaces the first subsequence of the input sequence that matches the pattern with the given replacement string.
5public static String quoteReplacement(String s)
Returns a literal replacement String for the specified String. This method produces a String that will work as a literal replacement s in the appendReplacement method of the Matcher class.

The start and end Methods:

Following is the example that counts the number of times the word "cats" appears in the input string:
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
    private static final String REGEX = "\\bcat\\b";
    private static final String INPUT =
                                    "cat cat cat cattie cat";

    public static void main( String args[] ){
       Pattern p = Pattern.compile(REGEX);
       Matcher m = p.matcher(INPUT); // get a matcher object
       int count = 0;

       while(m.find()) {
         count++;
         System.out.println("Match number "+count);
         System.out.println("start(): "+m.start());
         System.out.println("end(): "+m.end());
      }
   }
}
This would produce the following result:
Match number 1
start(): 0
end(): 3
Match number 2
start(): 4
end(): 7
Match number 3
start(): 8
end(): 11
Match number 4
start(): 19
end(): 22
You can see that this example uses word boundaries to ensure that the letters "c" "a" "t" are not merely a substring in a longer word. It also gives some useful information about where in the input string the match has occurred.
The start method returns the start index of the subsequence captured by the given group during the previous match operation, and end returns the index of the last character matched, plus one.

The matches and lookingAt Methods:

The matches and lookingAt methods both attempt to match an input sequence against a pattern. The difference, however, is that matches requires the entire input sequence to be matched, while lookingAt does not.
Both methods always start at the beginning of the input string. Here is the example explaining the functionality:
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
    private static final String REGEX = "foo";
    private static final String INPUT = "fooooooooooooooooo";
    private static Pattern pattern;
    private static Matcher matcher;

    public static void main( String args[] ){
       pattern = Pattern.compile(REGEX);
       matcher = pattern.matcher(INPUT);

       System.out.println("Current REGEX is: "+REGEX);
       System.out.println("Current INPUT is: "+INPUT);

       System.out.println("lookingAt(): "+matcher.lookingAt());
       System.out.println("matches(): "+matcher.matches());
   }
}
This would produce the following result:
Current REGEX is: foo
Current INPUT is: fooooooooooooooooo
lookingAt(): true
matches(): false

The replaceFirst and replaceAll Methods:

The replaceFirst and replaceAll methods replace text that matches a given regular expression. As their names indicate, replaceFirst replaces the first occurrence, and replaceAll replaces all occurrences.
Here is the example explaining the functionality:
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
    private static String REGEX = "dog";
    private static String INPUT = "The dog says meow. " +
                                    "All dogs say meow.";
    private static String REPLACE = "cat";

    public static void main(String[] args) {
       Pattern p = Pattern.compile(REGEX);
       // get a matcher object
       Matcher m = p.matcher(INPUT); 
       INPUT = m.replaceAll(REPLACE);
       System.out.println(INPUT);
   }
}
This would produce the following result:
The cat says meow. All cats say meow.

The appendReplacement and appendTail Methods:

The Matcher class also provides appendReplacement and appendTail methods for text replacement.
Here is the example explaining the functionality:
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
   private static String REGEX = "a*b";
   private static String INPUT = "aabfooaabfooabfoob";
   private static String REPLACE = "-";
   public static void main(String[] args) {
      Pattern p = Pattern.compile(REGEX);
      // get a matcher object
      Matcher m = p.matcher(INPUT);
      StringBuffer sb = new StringBuffer();
      while(m.find()){
         m.appendReplacement(sb,REPLACE);
      }
      m.appendTail(sb);
      System.out.println(sb.toString());
   }
}
This would produce the following result:
-foo-foo-foo-

PatternSyntaxException Class Methods:

A PatternSyntaxException is an unchecked exception that indicates a syntax error in a regular expression pattern. The PatternSyntaxException class provides the following methods to help you determine what went wrong:
SNMethods with Description
1public String getDescription()
Retrieves the description of the error.
2public int getIndex()
Retrieves the error index.
3public String getPattern()
Retrieves the erroneous regular expression pattern.
4public String getMessage()
Returns a multi-line string containing the description of the syntax error and its index, the erroneous regular expression pattern, and a visual indication of the error index within the pattern.

Java - Date & Time

Java provides the Date class available in java.util package, this class encapsulates the current date and time.
The Date class supports two constructors. The first constructor initializes the object with the current date and time.
Date( )
The following constructor accepts one argument that equals the number of milliseconds that have elapsed since midnight, January 1, 1970
Date(long millisec)
Once you have a Date object available, you can call any of the following support methods to play with dates:
SNMethods with Description
1boolean after(Date date)
Returns true if the invoking Date object contains a date that is later than the one specified by date, otherwise, it returns false.
2boolean before(Date date)
Returns true if the invoking Date object contains a date that is earlier than the one specified by date, otherwise, it returns false.
3Object clone( )
Duplicates the invoking Date object.
4int compareTo(Date date)
Compares the value of the invoking object with that of date. Returns 0 if the values are equal. Returns a negative value if the invoking object is earlier than date. Returns a positive value if the invoking object is later than date.
5int compareTo(Object obj)
Operates identically to compareTo(Date) if obj is of class Date. Otherwise, it throws a ClassCastException.
6boolean equals(Object date)
Returns true if the invoking Date object contains the same time and date as the one specified by date, otherwise, it returns false.
7long getTime( )
Returns the number of milliseconds that have elapsed since January 1, 1970.
8int hashCode( )
Returns a hash code for the invoking object.
9void setTime(long time)
Sets the time and date as specified by time, which represents an elapsed time in milliseconds from midnight, January 1, 1970
10String toString( )
Converts the invoking Date object into a string and returns the result.

Getting Current Date & Time

This is very easy to get current date and time in Java. You can use a simple Date object with toString() method to print current date and time as follows:
import java.util.Date;
  
public class DateDemo {
   public static void main(String args[]) {
       // Instantiate a Date object
       Date date = new Date();
        
       // display time and date using toString()
       System.out.println(date.toString());
   }
}
This would produce the following result:
Mon May 04 09:51:52 CDT 2009

Date Comparison:

There are following three ways to compare two dates:
  • You can use getTime( ) to obtain the number of milliseconds that have elapsed since midnight, January 1, 1970, for both objects and then compare these two values.
  • You can use the methods before( ), after( ), and equals( ). Because the 12th of the month comes before the 18th, for example, new Date(99, 2, 12).before(new Date (99, 2, 18)) returns true.
  • You can use the compareTo( ) method, which is defined by the Comparable interface and implemented by Date.

Date Formatting using SimpleDateFormat:

SimpleDateFormat is a concrete class for formatting and parsing dates in a locale-sensitive manner. SimpleDateFormat allows you to start by choosing any user-defined patterns for date-time formatting. For example:
import java.util.*;
import java.text.*;

public class DateDemo {
   public static void main(String args[]) {

      Date dNow = new Date( );
      SimpleDateFormat ft = 
      new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a zzz");

      System.out.println("Current Date: " + ft.format(dNow));
   }
}
This would produce the following result:
Current Date: Sun 2004.07.18 at 04:14:09 PM PDT

Simple DateFormat format codes:

To specify the time format, use a time pattern string. In this pattern, all ASCII letters are reserved as pattern letters, which are defined as the following:
CharacterDescriptionExample
GEra designatorAD
yYear in four digits2001
MMonth in yearJuly or 07
dDay in month10
hHour in A.M./P.M. (1~12)12
HHour in day (0~23)22
mMinute in hour30
sSecond in minute55
SMillisecond234
EDay in weekTuesday
DDay in year360
FDay of week in month2 (second Wed. in July)
wWeek in year40
WWeek in month1
aA.M./P.M. markerPM
kHour in day (1~24)24
KHour in A.M./P.M. (0~11)10
zTime zoneEastern Standard Time
'Escape for textDelimiter
"Single quote`

Date Formatting using printf:

Date and time formatting can be done very easily using printf method. You use a two-letter format, starting with t and ending in one of the letters of the table given below. For example:
import java.util.Date;

public class DateDemo {

  public static void main(String args[]) {
     // Instantiate a Date object
     Date date = new Date();

     // display time and date using toString()
     String str = String.format("Current Date/Time : %tc", date );

     System.out.printf(str);
  }
}
This would produce the following result:
Current Date/Time : Sat Dec 15 16:37:57 MST 2012
It would be a bit silly if you had to supply the date multiple times to format each part. For that reason, a format string can indicate the index of the argument to be formatted.
The index must immediately follow the % and it must be terminated by a $. For example:
import java.util.Date;
  
public class DateDemo {

   public static void main(String args[]) {
       // Instantiate a Date object
       Date date = new Date();
        
       // display time and date using toString()
       System.out.printf("%1$s %2$tB %2$td, %2$tY", 
                         "Due date:", date);
   }
}
This would produce the following result:
Due date: February 09, 2004
Alternatively, you can use the < flag. It indicates that the same argument as in the preceding format specification should be used again. For example:
import java.util.Date;
  
public class DateDemo {

   public static void main(String args[]) {
       // Instantiate a Date object
       Date date = new Date();
        
       // display formatted date
       System.out.printf("%s %tB %<te, %<tY", 
                         "Due date:", date);
   }
}
This would produce the following result:
Due date: February 09, 2004

Date and Time Conversion Characters:

CharacterDescriptionExample
cComplete date and timeMon May 04 09:51:52 CDT 2009
FISO 8601 date2004-02-09
DU.S. formatted date (month/day/year)02/09/2004
T24-hour time18:05:19
r12-hour time06:05:19 pm
R24-hour time, no seconds18:05
YFour-digit year (with leading zeroes)2004
yLast two digits of the year (with leading zeroes)04
CFirst two digits of the year (with leading zeroes)20
BFull month nameFebruary
bAbbreviated month nameFeb
mTwo-digit month (with leading zeroes)02
dTwo-digit day (with leading zeroes)03
eTwo-digit day (without leading zeroes)9
AFull weekday nameMonday
aAbbreviated weekday nameMon
jThree-digit day of year (with leading zeroes)069
HTwo-digit hour (with leading zeroes), between 00 and 2318
kTwo-digit hour (without leading zeroes), between 0 and 2318
ITwo-digit hour (with leading zeroes), between 01 and 1206
lTwo-digit hour (without leading zeroes), between 1 and 126
MTwo-digit minutes (with leading zeroes)05
STwo-digit seconds (with leading zeroes)19
LThree-digit milliseconds (with leading zeroes)047
NNine-digit nanoseconds (with leading zeroes)047000000
PUppercase morning or afternoon markerPM
pLowercase morning or afternoon markerpm
zRFC 822 numeric offset from GMT-0800
ZTime zonePST
sSeconds since 1970-01-01 00:00:00 GMT1078884319
QMilliseconds since 1970-01-01 00:00:00 GMT1078884319047
There are other useful classes related to Date and time. For more details, you can refer to Java Standard documentation.

Parsing Strings into Dates:

The SimpleDateFormat class has some additional methods, notably parse( ) , which tries to parse a string according to the format stored in the given SimpleDateFormat object. For example:
import java.util.*;
import java.text.*;
  
public class DateDemo {

   public static void main(String args[]) {
      SimpleDateFormat ft = new SimpleDateFormat ("yyyy-MM-dd"); 

      String input = args.length == 0 ? "1818-11-11" : args[0]; 

      System.out.print(input + " Parses as "); 

      Date t; 

      try { 
          t = ft.parse(input); 
          System.out.println(t); 
      } catch (ParseException e) { 
          System.out.println("Unparseable using " + ft); 
      }
   }
}
A sample run of the above program would produce the following result:
$ java DateDemo
1818-11-11 Parses as Wed Nov 11 00:00:00 GMT 1818
$ java DateDemo 2007-12-01
2007-12-01 Parses as Sat Dec 01 00:00:00 GMT 2007

Sleeping for a While:

You can sleep for any period of time from one millisecond up to the lifetime of your computer. For example, following program would sleep for 10 seconds:
import java.util.*;
  
public class SleepDemo {
   public static void main(String args[]) {
      try { 
         System.out.println(new Date( ) + "\n"); 
         Thread.sleep(5*60*10); 
         System.out.println(new Date( ) + "\n"); 
      } catch (Exception e) { 
          System.out.println("Got an exception!"); 
      }
   }
}
This would produce the following result:
Sun May 03 18:04:41 GMT 2009

Sun May 03 18:04:51 GMT 2009

Measuring Elapsed Time:

Sometimes, you may need to measure point in time in milliseconds. So let's re-write above example once again:
import java.util.*;
  
public class DiffDemo {

   public static void main(String args[]) {
      try {
         long start = System.currentTimeMillis( );
         System.out.println(new Date( ) + "\n");
         Thread.sleep(5*60*10);
         System.out.println(new Date( ) + "\n");
         long end = System.currentTimeMillis( );
         long diff = end - start;
         System.out.println("Difference is : " + diff);
      } catch (Exception e) {
         System.out.println("Got an exception!");
      }
   }
}
This would produce the following result:
Sun May 03 18:16:51 GMT 2009

Sun May 03 18:16:57 GMT 2009

Difference is : 5993

GregorianCalendar Class:

GregorianCalendar is a concrete implementation of a Calendar class that implements the normal Gregorian calendar with which you are familiar. I did not discuss Calendar class in this tutorial, you can look standard Java documentation for this.
The getInstance( ) method of Calendar returns a GregorianCalendar initialized with the current date and time in the default locale and time zone. GregorianCalendar defines two fields: AD and BC. These represent the two eras defined by the Gregorian calendar.
There are also several constructors for GregorianCalendar objects:
SNConstructor with Description
1GregorianCalendar()
Constructs a default GregorianCalendar using the current time in the default time zone with the default locale.
2GregorianCalendar(int year, int month, int date)
Constructs a GregorianCalendar with the given date set in the default time zone with the default locale.
3GregorianCalendar(int year, int month, int date, int hour, int minute)
Constructs a GregorianCalendar with the given date and time set for the default time zone with the default locale.
4GregorianCalendar(int year, int month, int date, int hour, int minute, int second)
Constructs a GregorianCalendar with the given date and time set for the default time zone with the default locale.
5GregorianCalendar(Locale aLocale)
Constructs a GregorianCalendar based on the current time in the default time zone with the given locale.
6GregorianCalendar(TimeZone zone)
Constructs a GregorianCalendar based on the current time in the given time zone with the default locale.
7GregorianCalendar(TimeZone zone, Locale aLocale)
Constructs a GregorianCalendar based on the current time in the given time zone with the given locale.
Here is the list of few useful support methods provided by GregorianCalendar class:
SNMethods with Description
1void add(int field, int amount)
Adds the specified (signed) amount of time to the given time field, based on the calendar's rules.
2protected void computeFields()
Converts UTC as milliseconds to time field values.
3protected void computeTime()
Overrides Calendar Converts time field values to UTC as milliseconds.
4boolean equals(Object obj)
Compares this GregorianCalendar to an object reference.
5int get(int field)
Gets the value for a given time field.
6int getActualMaximum(int field)
Return the maximum value that this field could have, given the current date.
7int getActualMinimum(int field)
Return the minimum value that this field could have, given the current date.
8int getGreatestMinimum(int field)
Returns highest minimum value for the given field if varies.
9Date getGregorianChange()
Gets the Gregorian Calendar change date.
10int getLeastMaximum(int field)
Returns lowest maximum value for the given field if varies.
11int getMaximum(int field)
Returns maximum value for the given field.
12Date getTime()
Gets this Calendar's current time.
13long getTimeInMillis()
Gets this Calendar's current time as a long.
14TimeZone getTimeZone()
Gets the time zone.
15int getMinimum(int field)
Returns minimum value for the given field.
16int hashCode()
Override hashCode.
17boolean isLeapYear(int year)
Determines if the given year is a leap year.
18void roll(int field, boolean up)
Adds or subtracts (up/down) a single unit of time on the given time field without changing larger fields.
19void set(int field, int value)
Sets the time field with the given value.
20void set(int year, int month, int date)
Sets the values for the fields year, month, and date.
21void set(int year, int month, int date, int hour, int minute)
Sets the values for the fields year, month, date, hour, and minute.
22void set(int year, int month, int date, int hour, int minute, int second)
Sets the values for the fields year, month, date, hour, minute, and second.
23void setGregorianChange(Date date)
Sets the GregorianCalendar change date.
24void setTime(Date date)
Sets this Calendar's current time with the given Date.
25void setTimeInMillis(long millis)
Sets this Calendar's current time from the given long value.
26void setTimeZone(TimeZone value)
Sets the time zone with the given time zone value.
27String toString()
Return a string representation of this calendar.

Example:

import java.util.*;
  
public class GregorianCalendarDemo {

   public static void main(String args[]) {
      String months[] = {
      "Jan", "Feb", "Mar", "Apr",
      "May", "Jun", "Jul", "Aug",
      "Sep", "Oct", "Nov", "Dec"};
      
      int year;
      // Create a Gregorian calendar initialized
      // with the current date and time in the
      // default locale and timezone.
      GregorianCalendar gcalendar = new GregorianCalendar();
      // Display current time and date information.
      System.out.print("Date: ");
      System.out.print(months[gcalendar.get(Calendar.MONTH)]);
      System.out.print(" " + gcalendar.get(Calendar.DATE) + " ");
      System.out.println(year = gcalendar.get(Calendar.YEAR));
      System.out.print("Time: ");
      System.out.print(gcalendar.get(Calendar.HOUR) + ":");
      System.out.print(gcalendar.get(Calendar.MINUTE) + ":");
      System.out.println(gcalendar.get(Calendar.SECOND));
      
      // Test if the current year is a leap year
      if(gcalendar.isLeapYear(year)) {
         System.out.println("The current year is a leap year");
      }
      else {
         System.out.println("The current year is not a leap year");
      }
   }
}
This would produce the following result:
Date: Apr 22 2009
Time: 11:25:27
The current year is not a leap year
For a complete list of constant available in Calendar class, you can refer to standard Java documentation.